

Florida Solar Energy Center • November 1-4, 2005

Radio Architecture with Reduced Transmitter Power Consumption for H₂ Sensor Networks

Kenneth K. O

Silicon Microwave Integrated Circuits and Systems Research Group

Department of Electrical and Computer Engineering

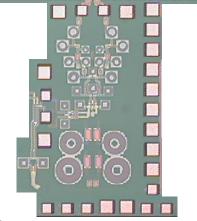
U. of Florida

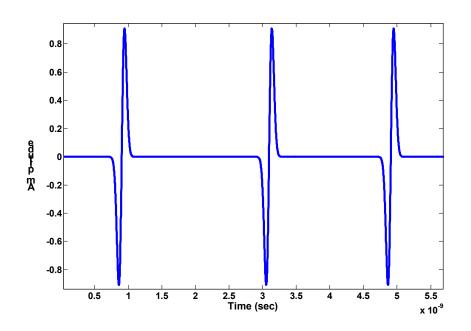
Start Date = January 2005
Planned Completion = December 2005

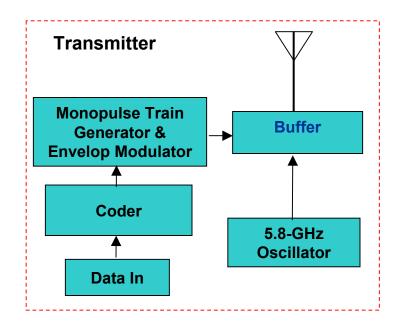
Florida Solar Energy Center • November 1-4, 2005

Research Goals and Objectives

To reduce power consumption, cost, and size of H₂ sensor nodes communicating to a base station up to 100m away, this project seeks to develop transmitter architecture with radically reduced power consumption, and seeks to investigate approaches to implement a tiny single chip RF transmitter (~5 mm x 1.0 mm) with on-chip antennas utilizing the architecture and low cost integrated circuits technology.







- •UWB communication using pulse position modulation with reduced TX power. Most of the time, it is not transmitting. For 10 kbps and 2 GHz pulse band width, transmitter is on around 5 μ S/sec. With pulse averaging of 10,000, transmitter is on 50 mS/sec.
- •RX power high (more than 1 W), but should be acceptable for a base station.
- Does not need a synthesizer and a mixer, which consume large portions of total power.
- UWB communication is tolerant to multiple path effects.

Center Frequency (f _c)	5.8	GHz
Throughput (Data rate) (R _b)	10	kbps
Range (R)	100	m
Transmitted Power (P _{tx})	-12	dBm
Pulse Integration or Retransmission of the Same Bit	10,000	
Peak Transmitted Power	1	dBm
Tx and Rx Antenna Gain (G _t & G _r)	-7 & 10	dBi
Path Loss (L)	87.7	dB
Received Power (P_{rx}) $(P_{tx}-L+G_t+G_r)$	-96.7	dBm
Rx Noise Figure (NF)	8	dB
$Minimum E_b/N_0 (S)$	6	dB
Total Avg. Noise Power/bit ($P_n = kTR_b + NF$)	-125.8	dBm
Implementation Loss (I)	3	dB
Link Margin ($LM = P_{rx} - P_n - I - S$)	20	dB

- 20 dB link margin should be adequate for TX power of 63 μW.
- TX power consumption should be ~ 3 mW. Possible to consider the use of energy scavenging.

Florida Solar Energy Center • November 1-4, 2005

Center Frequency (f _c)	5.8	GHz
Bandwidth (BW)	2	GHz
Throughput (Data rate) (R _b)	10	kbps
Range (R)	100	m
Transmitted Power (P_{tx})	-12	dBm
Pulse Integration or Retransmission of the Same Bit	10,000	
Peak Transmitted Power	1	dBm
Tx and Rx Antenna Gain $(G_t \& G_r)$	-7 & 10	dBi
Path Loss (L)	87.7	dB
Received Power (P_{rx}) $(P_{tx}-L+G_t+G_r)$	-96.7	dBm
Rx Noise Figure (NF)	8	dB
$Minimum E_b/N_0 (S)$	6	dB
Total Avg. Noise Power/bit $(P_n = kTR_b + NF)$	-125.8	dBm
Implementation Loss (I)	3	dB
Link Margin ($LM = P_{rx} - P_n - I - S$)	20	dB

Assuming a duty cycle of 0.1%, for 2 year operation, need a 44 mA-hr battery.
 Size 5 battery has ~40 mA-hr.

Florida Solar Energy Center • November 1-4, 2005

Relevance to Current State-of-the-Art

- The maximum communication distance using a pair of on-chip antennas has been suggested to be ~10 m. This is measured at 24-GHz in order to keep the antenna length to ~3 mm. Using an on-chip antenna/high gain antenna pair as well as operating at lower frequency, the maximum communication distance will be increased to 100 m.
- A large part of power consumption of a transmitter is due to that for a synthesizer, mixer and power amplifier. This project seeks to reduce the power consumption to less than 3 mW for transmitters with an onchip antenna which can communicate up to 100 m. This represents more than 20X reduction in power consumption.

Relevance to NASA

Will be able to reduce the cost of transmitter to ~50 cents and radically increase the duration between battery replacements for H₂ and other sensors.

Florida Solar Energy Center • November 1-4, 2005

Budget, Schedule and Deliverables

 Budget: \$35,000 for FY04 			Phasing Plan			
20090	, , , , , , , , , , , , , , , , , ,	Q1	Q2	Q3	Q4	
Project award date 9/30/04		\$6,500	\$11,000	\$11,000	\$6,500	
1	Project start	red 1/1/05				
		fabricated on-chip rennas for operation (05)	•			
Q1	Q2	Q3	Q4		Q5	

Completed evaluation of antennas (9/15/05)

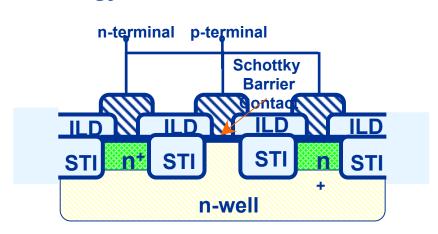
Deliverables:

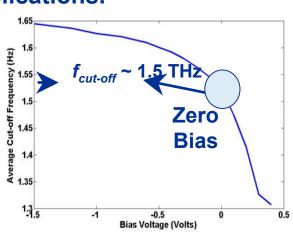
- On-chip antennas suitable for 100-m applications
- Transmitter architecture with reduced power

Florida Solar Energy Center • November 1-4, 2005

Anticipated Technology End Use

- A communication link for H₂ sensors.
- Communication links for a wide variety of sensors talking to a base station (For example: tire condition monitor).
- Inventory and other asset tracking.

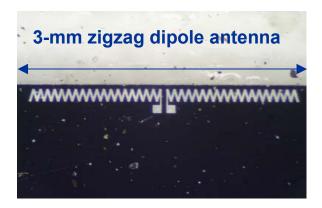


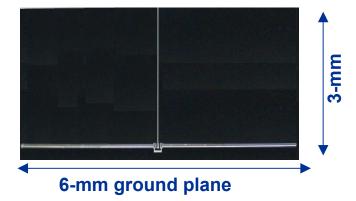


Florida Solar Energy Center • November 1-4, 2005

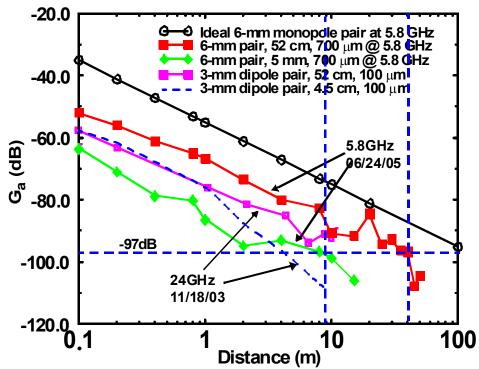
Accomplishments and Results

- This project has evolved from a transceiver project in which a receiver and a transmitter without a synthesizer were investigated. This project enabled us to finish up the work on Schottky diodes fabricated in foundry CMOS.
- 1.5-THz is the highest cut-off frequency for any silicon devices in mainstream foundry processes.
- Leakage at -1 V is 1-10 nA (excellent) for 16 x 0.32 x 0.32 mm² diode with 8 fF capacitance.
- This work has shown the possibility of using low cost mainstream silicon technology for sub-millimeter wave and THz applications.


- On-chip monopole antennas have been designed and fabricated.
- A measurement set-up for on-chip monopole antennas has been constructed using Delrin (ε_r = ~3.7).
 - Up-right measurement of on-chip monopoles on a glass slide.
 - •85° chuck alleviates the probe landing problem.
 - Measurements 5 mm from the ground.



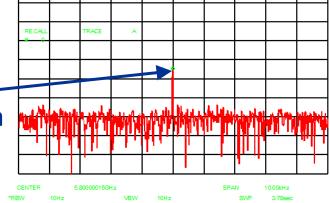
3-mm monopole antenna



$$G_a = \frac{\left|S_{21}\right|^2}{\left(1 - \left|S_{11}\right|^2\right)\left(1 - \left|S_{22}\right|^2\right)} = G_t G_r \left(\frac{\lambda}{4\pi R}\right)^2$$

- By using monopoles at 5.8 GHz, increased antenna pair gain. Sufficient gain at 0.5 mm from the ground for 10-m communication. 30% more area than a 3-mm zigzag dipole antenna.
- At 52 cm from the ground, the communication range has been improved from ~10 m to ~ 40 m.
- Should be able to increase by thinning the substrate from 700 to 100 μm.

Florida Solar Energy Center • November 1-4, 2005


A 0-dBm 5.8-GHz sine wave is transmitted from a glass room in the top of a building using a 6-mm on-chip monopole antenna.

11-dBi receiving patch antenna

-105.3 dBm

The received power of 5.8-GHz signal is - 105 dBm at 310 m away from the transmitter. Sufficient to build a radio with.

8 mm monopole

Florida Solar Energy Center • November 1-4, 2005

Future Plans

 Finalize the transmitter architecture based on the antenna measurement results.

Next year:

- Implement and demonstrate a transmitter in 130-nm CMOS process.
- Receiver design and TX to RX link demonstration.

Florida Solar Energy Center • November 1-4, 2005

Publications

- [1] K. K. O, K. Kim, B. Floyd, J. Mehta, H. Yoon, C.-M. Hung, D. Bravo, T. Dickson, X. Guo, R. Li, N. Trichy, J. Caserta, W. Bomstad, J. Branch, D.-J. Yang, J. Bohorquez, J. Chen, E.-Y. Seok, L. Gao, A. Sugavanam, J.-J. Lin, S. Yu, C. Cao, M.-H. Hwang, Y.-P. Ding, S.-H. Hwang, H. Wu, N. Zhang, and J. E. Brewer, "The Feasibility of On-Chip Interconnection using Antennas," (Invited) Accepted to ICCAD-2005.
- [2] J.-J. Lin, H.-T. Wu, and K. K. O, "Compact On-Chip Monopole Antennas on 20-W-cm Silicon Substrates for Operation in the 5.8-GHz ISM Band," Accepted to 2005 IEDM.
- [3] S. Sankaran, and K. K. O, "Schottky Barrier Diodes for Millimeter Wave and Detection in a Foundry CMOS Process," IEEE Electron Device Letters, vol. 26, no. 7, pp. 492-494, July 2005.
- [4] S. Sankaran, and K. K. O, "A Schottky Diode with Cut-off Frequency of 400 GHz Fabricated in 0.18-μm CMOS," Electronics Letters vol. 41, no. 8, pp. 506-508, Apr. 2005.